Most opioids undergo extensive first-pass metabolism in the liver before entering the systemic circulation. First-pass metabolism reduces the bioavailability of the opioid. Opioids are typically lipophilic, which allows them to cross cell membranes to reach target tissues. Drug metabolism is ultimately intended to make a drug hydrophilic to facilitate its excretion in the urine. Opioid metabolism takes place primarily in the liver, which produces enzymes for this purpose. These enzymes promote 2 forms of metabolism: phase 1 metabolism (modification reactions) and phase 2 metabolism (conjugation reactions).
Phase 1 metabolism typically subjects the drug to oxidation or hydrolysis. It involves the cytochrome P450 (CYP) enzymes, which facilitate reactions that include N-, O-, and S-dealkylation; aromatic, aliphatic, or N-hydroxylation; N-oxidation; sulfoxidation; deamination; and dehalogenation. Phase 2 metabolism conjugates the drug to hydrophilic substances, such as glucuronic acid, sulfate, glycine, or glutathione. The most important phase 2 reaction is glucuronidation, catalyzed by the enzyme uridine diphosphate glucuronosyltransferase (UGT). Glucuronidation produces molecules that are highly hydrophilic and therefore easily excreted. Opioids undergo varying degrees of phase 1 and 2 metabolism. Phase 1 metabolism usually precedes phase 2 metabolism, but this is not always the case. Both phase 1 and 2 metabolites can be active or inactive. The process of metabolism ends when the molecules are sufficiently hydrophilic to be excreted from the body.